Какая фигура лежит в основании прямоугольного параллелепипеда. Параллелепипед и куб

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Рассмотрим эти предметы:

Строительный кирпич, игральный кубик, микроволновая печь. Эти предметы объединяет форма.

Поверхность, состоящая из двух равных параллелограммов АВСD и А1В1С1D1

и четырех параллелограммов АА1В1В и ВВ1С1С, СС1D1D, АА1D1D называется параллелепипедом.

Параллелограммы, из которых составлен параллелепипед, называются гранями. Грань А1В1С1D1. Грань ВВ1С1С. Грань АВСD.

При этом грани АВСD и А1В1С1D1 чаще называют основаниями, а остальные грани боковыми.

Стороны параллелограммов называются ребрами параллелепипеда. Ребро А1В1. Ребро СС1. Ребро АD.

Ребро СС1, не принадлежит основаниям, оно называются боковое ребро.

Вершины параллелограммов называют вершинами параллелепипеда.

Вершина D1. Вершина В. Вершина С.

Вершины D1 и В

не принадлежат одной грани и называются противоположными.

Параллелепипед можно изображать разными способами

Параллелепипед в основании, которого лежит ромб, При этом изображениями граней являются параллелограммы.

Параллелепипед в основании, которого лежит квадрат. Невидимые рёбра АА1, АВ, АD изображаются штриховыми линиями.

Параллелепипед в основании, которого лежит квадрат

Параллелепипед в основании, которого лежит прямоугольник или параллелограмм

Параллелепипед, у которого все грани квадраты. Чаще его называют кубом.

Все рассмотренные параллелепипеды обладают свойствами. Сформулируем и докажем их.

Свойство 1. Противоположные грани параллелепипеда параллельны и равны.

Рассмотрим параллелепипед АВСDА1В1С1D1 и докажем, например, параллельность и равенство граней ВВ1С1С и АА1D1D.

По определению параллелепипеда грань АВСD параллелограмм, значит по свойству параллелограмма ребро ВС параллельно ребру АD.

Грань АВВ1А1 тоже параллелограмм, значит ребра ВВ1 и АА1 параллельны.

Это означает что две пересекающиеся прямые ВС и BB1 одной плоскости соответственно параллельны двум прямым АD и АА1 соответственно другой плоскости, значит плоскости АВВ1А1 и ВСС1D1 параллельны.

Все грани параллелепипеда параллелограммы а значит ВС=АD, ВВ1 =АА1.

При этом стороны углов В1ВС и А1АD соответственно сонаправлены, значит они равны.

Таким образом, две смежные стороны и угол между ними параллелограмма АВВ1А1 соответственно равны двум смежным сторонам и углу между ними параллелограмма ВСС1D1, значит эти параллелограммы равны.

Параллелепипед обладает ещё свойством о диагоналях. Диагональю параллелепипеда называется отрезок соединяющий не соседние вершины. На чертеж пунктирной линией показаны диагонали В1D, BD1, А1С.

Итак, свойство 2. Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам.

Для доказательства свойства рассмотрим четырехугольник ВВ1D1D. Его диагонали В1D, BD1 являются диагоналями параллелепипеда АВСDА1В1С1D1.

В первом свойстве мы уже выяснили, что ребро ВВ1 параллельно и равно ребру АА1, но ребро АА1 параллельно и равно ребру DD1. Следовательно рёбра ВВ1 и DD1 параллельны и равны, что доказывает четырехугольник ВВ1D1D- параллелограмм. А в параллелограмме по свойству диагонали В1D, BD1 пересекаются в некоторой точке О и этой точкой делятся пополам.

Четырехугольник ВС1D1А также является параллелограммом и его диагонали С1А, пересекаются в одной точке и делятся этой точкой пополам. Диагонали параллелограмма С1А, ВD1 являются диагоналями параллелепипеда, а значит сформулированное свойство доказано.

Для закрепления теоретических знаний о параллелепипеде рассмотрим задачу на доказательство.

На рёбрах параллелепипеда отмечены точки L,M,N,P так, что BL=CM=A1N=D1P. Доказать, что ALMDNB1C1P параллелепипед.

Грань ВВ1А1А параллелограмм, значит ребро ВВ1 равно и параллельно ребру АА1, но по условию отрезки BL и A1N, значит равны и параллельны отрезки LB1 и NA.

3)Следовательно, четырехугольник LB1NA по признаку параллелограмм.

4) Так как СС1D1D-параллелограмм, значит ребро СС1 равно и параллельно ребру D1D, а СМ равно D1P по условию, значит равны и параллельны отрезки МС1и DP

Следовательно, что четырехугольник MC1PD тоже параллелограмм.

5) Углы LB1N и MC1P равны как углы с соответственно параллельными и одинаково направленными сторонами.

6) Мы получили, что у параллелограммов и MC1PD соответствующие стороны равны и углы между ними равны, значит параллелограммы равны.

7) Отрезки равны по условию, значит BLMC- параллелограмм и сторона BC параллельна стороне LM параллельна стороне В1С1.

8) Аналогично из параллелограмма NA1D1P следует, что сторона A1D1 параллельна стороне NP и параллельна стороне AD.

9)Противоположные грани ABB1A1 и DCC1D1 параллелепипеда по свойству параллельны, а отрезки параллельных прямых заключенных между параллельными плоскостями равны, значит отрезки В1С1, LM, AD,NP равны.

Получено, что в четырехугольниках ANPD, NB1C1P, LB1C1M, ALMD две стороны параллельны и равны, значит они параллелограммы. Тогда наша поверхность ALMDNB1C1P состоит из шести параллелограммов, два из которых равны, а по определению это параллелепипед.

Теорема. Во всяком параллелепипеде противоположные грани равны и параллельны.

Так, грани (рис.) BB 1 С 1 С и AA 1 D 1 D параллельны, потому, что две пересекающиеся прямые BB 1 и B 1 С 1 одной грани параллельны двум пересекающимся прямым AA 1 и A 1 D 1 другой. Эти грани и равны, так как B 1 С 1 =A 1 D 1 , B 1 B=A 1 A (как противоположные стороны параллелограммов) и ∠BB 1 С 1 = ∠AA 1 D 1 .

Теорема. Во всяком параллелепипеде все четыре диагонали пересекаются в одной точке и делятся в ней пополам.

Возьмем (рис.) в параллелепипеде какие-нибудь две диагонали, например, AС 1 и DB 1 , и проведем прямые AB 1 и DС 1 .


Так как ребра AD и B 1 С 1 соответственно равны и параллельны ребру BС, то они равны и параллельны между собой.

Вследствие этого фигура ADС 1 B 1 есть параллелограмм, в котором С 1 A и DB 1 - диагонали, а в параллелограмме диагонали пересекаются пополам.

Это доказательство можно повторить о каждых двух диагоналях.

Поэтому диагональ AC 1 пересекается с BD 1 пополам, диагональ BD 1 с A 1 С пополам.

Таким образом, все диагонали пересекаются пополам и, следовательно, в одной точке.

Теорема. В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений.

Пусть (рис.) AC 1 есть какая-нибудь диагональ прямоугольного параллелепипеда.


Проведя AC, получим два треугольника: AC 1 С и ACB. Оба они прямоугольные:


первый потому, что параллелепипед прямой, и следовательно, ребро СС 1 перпендикулярно к основанию,

второй потому, что параллелепипед прямоугольный, значит в основании его лежит прямоугольник.

Из этих треугольников находим:

AC 2 1 = AC 2 + СС 2 1 и AC 2 = AB 2 + BC 2


Следовательно, AC 2 1 = AB 2 + BC 2 + СС 2 1 = AB 2 + AD 2 + AA 2 1

Следствие. В прямоугольном параллелепипеде все диагонали равны .

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Когда вы были маленькими и играли кубиками, то, возможно, складывали фигуры, изображенные на рисунке 154 . Эти фигуры дают представление о прямоугольном параллелепипеде . Форму прямоугольного параллелепипеда имеют, например, коробка конфет, кирпич, спичечный коробок, упаковочный ящик, пакет сока.

На рисунке 155 изображен прямоугольный параллелепипед ABCDA 1 B 1 C 1 D 1 .

Прямоугольный параллелепипед ограничен шестью гранями . Каждая грань − это прямоугольник, т.е. поверхность прямоугольного параллелепипеда состоит из шести прямоугольников.

Стороны граней называют ребрами прямоугольного параллелепипеда , вершины граней − вершинами прямоугольного параллелепипеда . Например, отрезки AB, BC, A 1 B 1 − ребра, а точки B, A 1 , C 1 − вершины параллелепипеда ABCDA 1 B 1 C 1 D 1 (рис. 155 ).

У прямоугольного параллелепипеда 8 вершин и 12 ребер.

Грани AA 1 B 1 B и DD 1 C 1 C не имеют общих вершин. Такие грани называют противолежащими . В параллелепипеде ABCDA 1 B 1 C 1 D 1 есть еще две пары противолежащих граней: прямоугольники ABCD и A 1 B 1 C 1 D 1 , а также прямоугольники AA 1 D 1 D и BB 1 C 1 C.

Противолежащие грани прямоугольного параллелепипеда равны.

На рисунке 155 грань ABCD называют основанием прямоугольного параллелепипеда ABCDA 1 B 1 C 1 D 1 .

Площадью поверхности параллелепипеда называют сумму площадей всех его граней.

Чтобы иметь представление о размерах прямоугольного параллелепипеда, достаточно рассмотреть любые три ребра, имеющие общую вершину. Длины этих ребер называют измерениями прямоугольного параллелепипеда. Чтобы их различать, пользуются названиями: длина , ширина , высота (рис. 156 ).

Прямоугольный параллелепипед, у которого все измерения равны, называют кубом (рис. 157 ). Поверхность куба состоит из шести равных квадратов.

Если коробку, имеющую форму прямоугольного параллелепипеда, открыть (рис. 158 ) и разрезать по четырем вертикальным ребрам (рис. 159 ), а затем развернуть, то получим фигуру, состоящую из шести прямоугольников (рис. 160 ). Эту фигуру называют разверткой прямоугольного параллелепипеда .

На рисунке 161 изображена фигура, состоящая из шести равных квадратов. Она является разверткой куба.

С помощью развертки можно изготовить модель прямоугольного параллелепипеда.

Это можно сделать, например, так. Начертить на бумаге его развертку. Вырезать ее, согнуть по отрезкам, соответствующим ребрам прямоугольного параллелепипеда (см. рис. 159 ), и склеить.

Прямоугольный параллелепипед является видом многогранника − фигуры, поверхность которой состоит из многоугольников. На рисунке 162 изображены многогранники.

Одним из видов многогранника является пирамида .

Эта фигура для вас не нова. Изучая курс Древнего мира, вы познакомились с одним из семи чудес света − египетскими пирамидами.

На рисунке 163 изображены пирамиды MABC, MABCD, MABCDE. Поверхность пирамиды состоит из боковых граней − треугольников, имеющих общую вершину, и основания (рис. 164 ). Общую вершину боковых граней называют ребрами основания пирамиды , а стороны боковых граней, не принадлежащие основанию, − боковыми ребрами пирамиды .

Пирамиды можно классифицировать по количеству сторон основания: треугольная, четырехугольная, пятиугольная (см. рис. 163 ) и т.д.

Поверхность треугольной пирамиды состоит из четырех треугольников. Любой из этих треугольников может служить основанием пирамиды. Это основание вид пирамиды, любая грань которой может служить ее основанием.

На рисунке 165 изображена фигура, которая может служить разверткой четырехугольной пирамиды . Она состоит из квадрата и четырех равных равнобедренных треугольников.

На рисунке 166 изображена фигура, состоящая из четырех равных равносторонних треугольников. С помощью этой фигуры можно сделать модель треугольной пирамиды, у которой все грани − равносторонние треугольники.

Многогранники являются примерами геометрических тел .

На рисунке 167 изображены знакомые вам геометрические тела, не являющиеся многогранниками. Более подробно с этими телами вы познакомитесь в 6 классе.

В переводе с греческого языка параллелограмм означает плоскость. Параллелепипед – это призма, в основании которой лежит параллелограмм. Существуют пять типов параллелограмма: наклонный, прямой и прямоугольный параллелепипед. Куб и ромбоэдр также относятся к параллелепипеду и являются его разновидностью.

Перед тем как перейти к основным понятиям, дадим некоторые определения:

  • Диагональю параллелепипеда является отрезок, который объединяет вершины параллелепипеда, находящиеся напротив друг друга.
  • Если две грани имеют общее ребро, то можно назвать их смежными ребрами. Если же общего ребра нет, то грани именуются противоположными.
  • Две вершины, не лежащие на одной грани, именуются противоположными.

Какие свойства имеет параллелепипед?

  1. Лежащие на противоположных сторонах грани параллелепипеда параллельны друг другу и равны между собой.
  2. Если провести диагонали из одной вершины в другую, то точка пересечения этих диагоналей разделит их пополам.
  3. Стороны параллелепипеда лежащие под одним и тем же углом к основанию будут равны. Другими словами, углы сонаправленных сторон будут равны между собой.

Какие виды параллелепипеда бывают?

Теперь разберёмся в том, какие параллелепипеды бывают. Как уже упомянуто выше, существует несколько типов этой фигуры: прямой, прямоугольный, наклонный параллелепипед, а также куб и ромбоэдр. Чем же они отличаются между собой? Все дело в образующих их плоскостях и углах, которые они образуют.

Разберемся более подробно с каждым из перечисленных видов параллелепипеда.

  • Как уже понятно из названия, наклонный параллелепипед имеет наклонные грани, а именно такие грани, которые находятся по отношению к основанию не под углом 90 градусов.
  • А вот у прямого параллелепипеда угол между основанием и гранью как раз составляет девяносто градусов. Именно по этой причине этот вид параллелепипеда имеет такое название.
  • Если же все грани параллелепипеда – это одинаковые квадраты, то можно считать эту фигуру кубом.
  • Прямоугольный параллелепипед получил такое название из-за образующих его плоскостей. Если все они являются прямоугольниками (и основание в том числе), то это прямоугольный параллелепипед. Такой вид параллелепипеда встречается не так часто. В переводе с греческого ромбоэдр означает грань или основание. Так называют трехмерную фигуру, у которой гранями являются ромбы.



Основные формулы для параллелепипеда

Объём параллелепипеда равен произведению площади основания на его высоту, перпендикулярную основанию.

Площадь боковой поверхности будет равна произведению периметра основания на высоту.
Зная основные определения и формулы можно вычислить площадь основания и объём. Основание можно выбрать по своему усмотрению. Однако, как правило, в качестве основания используется прямоугольник.

Похожие статьи

© 2024 dw-laska.ru. Строительный портал - DwLaska.